Diploma in Computer Engineering

Software Engineering

Dr. Vicky Kumar
Guru Nanak Dev DSEU Rohini Campus

Software Engineering

e Software
o Application Software
o System Software
o Firmware
e Engineering
o Application of science and math to solve problems
o Use of best practices to design, evaluate, develop, test, modify, install, inspect and

maintain a wide variety of products and systems

Definition

e The IEEE fully defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application
of engineering to software.

S/W Engg. is about

Updates

Software
Product

Code Design

Requirements

Source: https://static.javatpoint.com

Software Engineering: A layered technology

Tools >

Methods

A quality focus

Contd.

e Quality focus: Utmost attention to quality
o CMM, Six sigma, ISO
e Process: Framework for timely delivery of software technology

o Defines who is doing what, when and how to reach a certain goal
o Management control of the software products
o E.g. Models, Documents, Data, Reports, Forms, etc.

e Methods: Technical how-to’s for building software
o Requirement analysis, design, development, testing, deployment, maintenance
e Tools: Automated or semi-automated support for process and methods

o Flowchart makers, report/document generator, code generator, code analyser

Software Process

e Communication
e Planning

e Modeling

e Construction

e Deployment

Communication Planning Modeling Construction Deployment

(a) Linear process flow

Communication Planning Modeling Construction Deployment

(b) lterative process flow

Planning

Modeling

Communication

Increment

Construction
released

Deployment

(c) Evolutionary process flow

Software Development Life Cycle (SDLC)

e Feasibility study

e Requirement analysis and specification

o Requirement Gathering and Analysis
o Requirement Specification

e Designing

e Coding and Unit Testing

e Integration and system testing
e Deployment

e Maintenance

Software Process Models

e Classical Waterfall Model

(https:/lwww.geeksforgeeks.org/software-engineering-classical-waterfall-model/?ref=lb

p)
e Iterative Waterfall Model

(https://lwww.geeksforgeeks.org/software-engineering-iterative-waterfall-model/)

o Rapid Application Development Model

(https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-
rad/)

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/
https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/

Incremental Model

Software Functionality and Features

D Communication

D Planning

I:' Modeling (analysis, design)
|:| Construction (code, test)
|:| Deployment (delivery, feedback)

increment # 2

increment # n

-1

-

increment # 1

e

j ™ delivery of

2nd increment

4

delivery of

1st increment

g

delivery of
nth increment

Project Calendar Time

Spiral Model

(https://lwww.geeksforgeeks.org/software-engineering-spiral-model/?ref=lbp)

Planning
estimation
scheduling
risk analysis

Communication

Modeling
analysis
design

Deployment
proy / Construction

delivery

feedback

code
test

Software Requirement Specifications (SRS)

e Requirement:

(1) A condition of capability needed by a user to solve a problem or achieve
an objective;

(2) A condition or a capability that must be met or possessed by a system to
satisfy a contract, standard, specification, or other formally imposed
document”

e SRS: describes what the proposed software should do without describing how
the software will do it.

Value of a Good SRS

e Bridges the communication gap between client and developer

e Through SRS, the client clearly describes what it expects from the supplier,
and the developer clearly understands what capabilities to build in the
software

e \Without a proper SRS, there is no way a client can determine if the software
being delivered is what was ordered, and there is no way the developer can
convince the client that all the requirements have been fulfilled

e An SRS provides a reference for validation of the final product

Requirement Process

Client/User) -
Needs

Problem

o Meeting with clients and even with end-users | Analysis |

e Requirement Analysis

o Thorough study of problem statement

e Requirement Specification }

e Requirement Validation Product
Description

i

Validation

v

Validated SRS

Requirement Specification

e Characteristics
o Correct
o Complete
o Unambiguous
o Verifiable
o Consistent

o Ranked for importance or stability

Component of an SRS

Requirements pertaining to the
e Functionality
o Describe the relationship between the input and output of the system
e Performance
o Static: No. of users or terminals to be supported
o Dynamic: Response time or throughput
e Design constraints imposed on an implementation

o Hardware and Software resources constraints, standards compliance, reliability,
fault-tolerance, security

e External interfaces

o Interfaces with hardware, software, and end-users

Structure of an SRS

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview
2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 General Constraints
2.5 Assumptions and Dependencies
3. Specific Requirements

Contd.

3. Detailed Requirements

3.1 External Interface Requirements
3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces
3.2. Functional Requirements
3.2.1 Mode 1
3.2.1.1 Functional Requirement 1.1

3.2.1.n Functional Requirement 1.n

3.2.m Mode m
3.2.m.1 Functional Requirement m.1

3.2.m.n Functional Requirement m.n
3.3 Performance Requirements
3.4 Design Constraints
3.5 Attributes
3.6 Other Requirements

Concepts of Use Cases for Functional Specification

atm ATM

‘Withdraw Cash’

% e anard
‘Bank Custome"\\ \

‘Deposit Funds’

' ‘Refill Machine’

‘Maintenance Person’

T

Components of a Use Case

e System

e Goal

e Actor: Person or a system which uses the system for achieving some goal
o Primary actor

e Precondition

e Scenario: Sequence of activities to be performed to achieve the goal

o Main success scenario

o Extension scenario

Use Case Methodology

1 3 5
Identify all system Describe the course Identify all commonalities
users and create a taken through the system in user journeys to create a
profile for each one to reach that goal COmMmMmOon course use case

2 4 6
Select one user Consider every alternate Repeat steps 2-5
and define their goal course of events and for all other system

extend use case users

Example of a Use case

— UC1: Put an item for auction
Primary Actor: Seller
Precondition: Seller has logged in
Main Success Scenario:
1. Seller posts an item (its category, description, picture, etc.) for auction
2. System shows past prices of similar items to seller
3. Seller specifies the starting bid price and a date when auction will close
4. System accepts the item and posts it

FException Scenarios:
— 2 a) There are no past items of this category

e System tells the seller this situation

Contd.

— UC2: Make a bid
Primary Actor: Buyer
Precondition: The buyer has logged in
Main Success Scenario:

1. Buyer searches or browses and selects some item

2. System shows the rating of the seller, the starting bid, the current bids, and

the highest bid; asks buyer to make a bid

Buyer specifies a bid price

4. System accepts the bid; Blocks funds in bidders account

5. System updates the max bid price, informs other users, and updates the
records for the item

&

FException Scenarios:
— 3 a) The bid price is lower than the current highest

e System informs the bidder and asks to rebid
— 4 a) The bidder does not have enough funds in his account

e System cancels the bid, asks the user to get more funds

Data Flow Diagram for process analysis

Employee Record

Overtime Rate Company Records

Deduct
Taxes

Overtime
Pay

Paycheck

Overtime

Hours Cheék‘

Weekly Timesheet

Tax Rates » :
Worker Worker

Software metrics

e Metric: Measurement of software characteristics (size, cost, reliability, etc.)

A quantitative measure of the degree to which a system, component, or

process possesses a given attribute

e Categories
o Product metrics (e.g. size, complexity, reliability)
o Process metrics (e.g. design, tool, technique)

o Project metrics (e.g. cost, man power, efforts, time)

Contd.

e Type of metrics
o Internal (Lines of Code (LOC) measure)
o External (Portability, reliability, functionality, usability, etc)

o Hybrid (combines product, process, and resource metrics)

e Process
o ldentification of appropriate metrics
o Data for Formulation of metrics
o Analysis of results obtained based on past data
o Interpretation of analysed results

o Modification in the requirement, design model, coding, testing, etc.

Size-oriented metrics

e Lines of Code (LOC) or Thousand lines of code (KLOC) forms the basis
for metrics

e Based on LOC or KLOC following metrics are derived

o Effort (man power/month)
o Cost

o Documentation Pages

o Errors

o Defects

o People

Project LOC Effort | $(000) | Pp. doc. | Errors | Defects | People
alpha 12,100 24 168 365 134 29 3
beta 27,200 62 440 1224 321 86 5
gamma | 20,200 43 314 1050 256 64 6

Function-oriented metrics

e Functional-point metrics measure the functionality delivered by a system

e Basis for FP is the requirements of system

e The FP metrics can be used to
(1) estimate the cost or effort required to design, code, and test the software;
(2) predict the number of errors that will be encountered during testing; and
(3) forecast the number of components and/or the number of projected source

lines in the implemented system.

Contd.

e FPs are derived considering
o Number of external inputs
o Number of external outputs
o Number of external inquiries
o Number of internal logical files
o Number of external interface files
e \Weighing factor (three classes)
e Unadjusted FP count
e Value adjustment factor
e Adjusted FP count

Halstead Metrics

e Used to determine the complexity of the system

e Unique and total occurence of
o Operators
o Operands
e https://www.ibm.com/docs/en/rtr/8.0.0?topic=SSSHUF _8.0.0/com.ibm.rational.testrt.stu

dio.doc/topics/csmhalstead.htm

