
Diploma in Computer Engineering

Software Engineering

Dr. Vicky Kumar
Guru Nanak Dev DSEU Rohini Campus



Software Engineering

● Software
○ Application Software 

○ System Software

○ Firmware

● Engineering
○ Application of science and math to solve problems

○ Use of best practices to design, evaluate, develop, test, modify, install, inspect and 

maintain a wide variety of products and systems



Definition

● The IEEE fully defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the application 
of engineering to software.



S/W Engg. is about

Source: https://static.javatpoint.com



Software Engineering: A layered technology



Contd.

● Quality focus: Utmost attention to quality
○ CMM, Six sigma, ISO

● Process: Framework for timely delivery of software technology
○ Defines who is doing what, when and how to reach a certain goal
○ Management control of the software products
○ E.g. Models, Documents, Data, Reports, Forms, etc.

● Methods: Technical how-to’s for building software
○ Requirement analysis, design, development, testing, deployment, maintenance

● Tools: Automated or semi-automated support for process and methods
○ Flowchart makers, report/document generator, code generator, code analyser



Software Process

● Communication

● Planning

● Modeling

● Construction

● Deployment





Software Development Life Cycle (SDLC)

● Feasibility study

● Requirement analysis and specification
○ Requirement Gathering and Analysis

○ Requirement Specification

● Designing 

● Coding and Unit Testing

● Integration and system testing

● Deployment

● Maintenance



Software Process Models

● Classical Waterfall Model 
(https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/?ref=lb

p)

● Iterative Waterfall Model 
(https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/)

● Rapid Application Development Model 
(https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-

rad/)

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/
https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/


Incremental Model



Spiral Model 
(https://www.geeksforgeeks.org/software-engineering-spiral-model/?ref=lbp)



Software Requirement Specifications (SRS)

● Requirement: 

(1) A condition of capability needed by a user to solve a problem or achieve 
an objective; 

(2) A condition or a capability that must be met or possessed by a system to 
satisfy a contract, standard, specification, or other formally imposed 
document”

● SRS: describes what the proposed software should do without describing how 
the software will do it.



Value of a Good SRS

● Bridges the communication gap between client and developer

● Through SRS, the client clearly describes what it expects from the supplier, 

and the developer clearly understands what capabilities to build in the 

software

● Without a proper SRS, there is no way a client can determine if the software 

being delivered is what was ordered, and there is no way the developer can 

convince the client that all the requirements have been fulfilled

● An SRS provides a reference for validation of the final product



Requirement Process

● Requirement Analysis
○ Thorough study of problem statement

○ Meeting with clients and even with end-users

● Requirement Specification

● Requirement Validation



Requirement Specification

● Characteristics
○ Correct

○ Complete

○ Unambiguous

○ Verifiable

○ Consistent

○ Ranked for importance or stability



Component of an SRS

Requirements pertaining to the
● Functionality

○ Describe the relationship between the input and output of the system

● Performance
○ Static: No. of users or terminals to be supported
○ Dynamic: Response time or throughput 

● Design constraints imposed on an implementation
○ Hardware and Software resources constraints, standards compliance, reliability, 

fault-tolerance, security

● External interfaces
○ Interfaces with hardware, software, and end-users



Structure of an SRS



Contd.



Concepts of Use Cases for Functional Specification



● System

● Goal

● Actor: Person or a system which uses the system for achieving some goal

○ Primary actor

● Precondition

● Scenario: Sequence of activities to be performed to achieve the goal

○ Main success scenario

○ Extension scenario

Components of a Use Case



Use Case Methodology



Example of a Use case



Contd.



Data Flow Diagram for process analysis



Software metrics

● Metric: Measurement of software characteristics (size, cost, reliability, etc.)

A quantitative measure of the degree to which a system, component, or 

process possesses a given attribute

● Categories
○ Product metrics (e.g. size, complexity, reliability)

○ Process metrics (e.g. design, tool, technique)

○ Project metrics (e.g. cost, man power, efforts, time)



● Type of metrics
○ Internal (Lines of Code (LOC) measure)

○ External (Portability, reliability, functionality, usability, etc)

○ Hybrid (combines product, process, and resource metrics)

● Process
○ Identification of appropriate metrics 

○ Data for Formulation of metrics

○ Analysis of results obtained based on past data

○ Interpretation of analysed results

○ Modification in the requirement, design model, coding, testing, etc.

Contd.



Size-oriented metrics

● Lines of Code (LOC) or Thousand lines of code (KLOC) forms the basis 

for metrics

● Based on LOC or KLOC following metrics are derived
○ Effort (man power/month)

○ Cost

○ Documentation Pages

○ Errors

○ Defects

○ People





Function-oriented metrics

● Functional-point metrics measure the functionality delivered by a system

● Basis for FP is the requirements of system

● The FP metrics can be used to 

(1) estimate the cost or effort required to design, code, and test the software; 

(2) predict the number of errors that will be encountered during testing; and 

(3) forecast the number of components and/or the number of projected source 

lines in the implemented system.



Contd.

● FPs are derived considering

○ Number of external inputs 

○ Number of external outputs

○ Number of external inquiries

○ Number of internal logical files

○ Number of external interface files

● Weighing factor (three classes)

● Unadjusted FP count

● Value adjustment factor

● Adjusted FP count



Halstead Metrics

● Used to determine the complexity of the system

● Unique and total occurence of 

○ Operators

○ Operands

● https://www.ibm.com/docs/en/rtr/8.0.0?topic=SSSHUF_8.0.0/com.ibm.rational.testrt.stu

dio.doc/topics/csmhalstead.htm


