

SOFTWARE

ENGINEERING

AMBEDKAR INSTITUTE OF TECHNOLOGY | Shakarpur, Delhi -92

INDEX

S. No. Topic Page No.

1 What do you understand from Software Engineering? Describe Waterfall

Model?
1-3

2 Describe Spiral Model? What are its advantages and disadvantages? 4-6

3 Describe Prototype Model? What are its advantages and disadvantages? 7-8

4 Compare the various SE process models along with its advantages and

disadvantages.
9-11

5 What do you understand from Requirements? What are characteristics of

Requirements? Describe the different types of Requirements.
12-13

6 Identify Functional and Non-Functional Requirements from the given

problem statement.
14-14

7 Identify Functional and Non-Functional Requirements from the given

problem Statement.
15-15

8 What are the various Project Estimation Techniques? Explain

COCOMO. What are various types of COCOMO? Explain Basic

COCOMO model with respect to Organic, Semi-detached and

Embedded.

16-18

9 Using basic COCOMO model, find out the EFFORT, TIME FOR

DEVELOPMENT, and NUMBER OF DEVELOPERS REQUIRED if

the project is Organic and the project size is 200KLOC.

19-19

10 Using basic COCOMO model, find out the EFFORT, TIME FOR

DEVELOPMENT, and NUMBER OF DEVELOPERS REQUIRED if

the project is embedded and the project size is 350KLOC.

20-20

11 What do you understand from Entity-Relationship Model? Explain Entity

Set and Relationship Set. What do you mean by Attributes and Keys?
21-27

12 Draw an ER Diagram for Library Management System which includes

book_info, Staff_info, issue_of_book, return_of_book, fine_calculation.
28-28

13 What do you understand from Data Flow Diagrams? Describe Graphical

notations for Data flow Diagrams. Explain the Symbols used in DFD.

30-34

14 Make a DFD for Library Management System. 35-36

Practical-1

Aim: What do you understand from Software Engineering? Describe Waterfall Model?

Software Engineering:

Software is more than just a program code. A program is an executable code, which serves some computational

purpose. Software is considered to be collection of executable programming code, associated libraries and

documentations. Software, when made for a specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with development of software product using well-defined

scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable software

product.

Fritz Bauer, a German computer scientist, defines software engineering as “Software engineering is the establishment

and use of sound engineering principles in order to obtain economically software that is reliable and work efficiently on

real machines.”

Waterfall Model:

Introduction:

Waterfall model is an example of Sequential model. In this model, the software development activity is divided into

different phases and each phase consists of series of tasks and has different objectives.

Waterfall model is the pioneer of the SDLC processes. In fact, it was the first model which was widely used in the

software industry. It is divided into phases and output of one phase becomes input of the next phase. It is mandatory for a

phase to be completed before the next phase starts. In short, there is no overlapping in Waterfall model

In waterfall, development of one phase starts only when the previous phase is complete. Because of this nature,

each phase of waterfall model is quite precise well defined. Since the phase’s falls from higher level to lower level,

like a water fall, It’s named as waterfall model.

Pictorial representation of waterfall model:

The activities involved in different phases are as follows:

S.No

Phase

Activities Performed

Deliverables

1

Requirement Analysis

1. Capture all the

requirements. 2. Do

brainstorming and

walkthrough to understand the

requirements. 3. Do the

requirements feasibility test to

ensure that the requirements
are testable or not.

RUD (Requirements
Understanding Document)

2

System Design

1. As per the requirements,

create the design 2. Capture

the hardware / software

requirements. 3. Document the

designs

HLD (High Level Design

document) LLD (Low

level design document)

3

Implementation

1. As per the design create the

programs / code 2. Integrate

the codes for the next phase. 3.

Unit testing of the code

Programs Unit test cases

and results

4

System Testing

1. Integrate the unit tested

code and test it to make sure if

it works as expected. 2.

Perform all the testing

activities (Functional and non-

functional) to make sure that

the system meets the

requirements. 3. In case of any

anomaly, report it. 4. Track

your progress on testing

through tools like traceability

metrics, ALM 5. Report your
testing activities.

Test cases Test reports

Defect reports Updated

matrices.

5

System Deployment

1. Make sure that the

environment is up 2. Make

sure that the test exit criteria

are met. 3. Deploy the

application in the respective

environment. 4. Perform a

sanity check in the

environment after the

application is deployed to

ensure the application does not
break.

User Manual Environment

definition / specification

6

System maintenance

1. Make sure that the

application is up and running

in the respective environment.

2. In case user encounters and

defect, make sure to note and

fix the issues faced. 3. In case

any issue is fixed; the updated

code is deployed in the

environment. 4.The

application is always

enhanced to incorporate more

features, update the

environment with the latest
features

User Manual List of

production tickets List of

new features implemented.

When to use SDLC Waterfall Model?

SDLC Waterfall model is used when

Requirements are stable and not changed frequently.

Application is small.

There is no requirement which is not understood or not very clear.

The environment is stable

The tools and technology used is stable and is not dynamic

Resources are well trained and are available.

Advantages and Disadvantages of waterfall model:

Advantages of using Waterfall model are as follows:

Simple and easy to understand and use.

For smaller projects, waterfall model works well and yield the appropriate results.

Since the phases are rigid and precise, one phase is done one at a time, it is easy to maintain.

The entry and exit criteria are well defined, so it easy and systematic to proceed with quality.

Results are well documented.

Disadvantages of using Waterfall model:

Cannot adopt the changes in requirements

It becomes very difficult to move back to the phase. For example, if the application has now

moved to testing stage and there is a change in requirement, it becomes difficult to go back and

change it.

Delivery of the final product is late as there is no prototype which is demonstrated

intermediately.

For bigger and complex projects, this model is not good as risk factor is higher.

Not suitable for the projects where requirements are changed frequently.

Does not work for long and ongoing projects.

Since the testing is done at later stage, it does not allow identifying the challenges and risks in

the earlier phase so the risk mitigation strategy is difficult to prepare.

Practical-2

Aim: Describe Spiral Model? What are its advantages and disadvantages?

Introduction:

Spiral model is a combination of sequential and prototype model. This model is best used for large projects which

involves continuous enhancements. There are specific activities which are done in one iteration (spiral) where the

output is a small prototype of the large software. The same activities are then repeated for all the spirals till the

entire software is build.

To explain in simpler terms, the steps involved in spiral model are:

A spiral model has 4 phases described below:

1. Planning phase

2. Risk analysis phase

3. Engineering phase

4. Evaluation phase.

Activities which are performed in the spiral model phases are shown below:

Phase Name Activities performed Deliverables / Output

Planning -Requirements are studied and

gathered. - Feasibility study -

Reviews and walkthroughs to
streamline the requirements

Requirements understanding

document Finalized list of

requirements.

Phase Name Activities performed Deliverables / Output

Risk Analysis Requirements are studied and

brain storming sessions are done

to identify the potential risks

Once the risks are identified, risk

mitigation strategy is planned and

finalized

Document which highlights all

the risks and its mitigation plans.

Engineering Actual development and testing if

the software takes place in this

phase

Code Test cases and test results

Test summary report and defect

report.

Evaluation

Customers evaluate the software
and provide their feedback and
approval

Features implemented document

Pictorial representation of SDLC Spiral model

Testing and development starts from planning phase and carries up to evaluation phase. All the

requirements are collected in the planning phase itself. In the risk analysis phase, we assume all the

risks could be occurred during testing and development. In engineering and execution phase we start

executing the test cases which are planned and identified and finally we move to the evaluation phase

where we review the progress of the project. The reason of success of Spiral Model is that analysis

and engineering both carried out in each phase of the project.

When to Use Spiral model?

Spiral is used in the following scenarios:

When the project is large.

Where the software needs continuous risk evaluation.

Requirements are a bit complicated and require continuous clarification.

Software requires significant changes.

Where enough time frame is there to get end user feedback.

Where releases are required to be frequent.

Advantages and Disadvantages of using Spiral Model:

Advantages of using Spiral model are as follows:

Development is fast

Larger projects / software are created and handled in a strategic way

Risk evaluation is proper.

Control towards all the phases of development.

More and more features are added in a systematic way.

Software is produced early.

Has room for customer feedback and the changes are implemented faster.

Disadvantages of Spiral model are as follows:

Risk analysis is important phase so requires expert people.

Is not beneficial for smaller projects.

Spiral may go infinitely.

Documentation is more as it has intermediate phases.

It is costly for smaller projects.

Practical-3

Aim: Describe Prototype Model? What are its advantages and disadvantages?

Introduction:

The basic idea here is that instead of freezing the requirements before a design or coding can proceed, a throwaway

prototype is built to understand the requirements. This prototype is developed based on the currently known

requirements. By using this prototype, the client can get an “actual feel” of the system, since the interactions with

prototype can enable the client to better understand the requirements of the desired system. Prototyping is an attractive

idea for complicated and large systems for which there is no manual process or existing system to help determining the

requirements. The prototype are usually not complete systems and many of the details are not built in the prototype. The

goal is to provide a system with overall functionality.

Diagram of Prototype model:

When to use Prototype model:

Prototype model should be used when the desired system needs to have a lot of interaction with

the end users.

Typically, online systems, web interfaces have a very high amount of interaction with end users,

are best suited for Prototype model. It might take a while for a system to be built that allows ease

of use and needs minimal training for the end user.

Prototyping ensures that the end users constantly work with the system and provide a feedback

which is incorporated in the prototype to result in a useable system. They are excellent for

designing good human computer interface systems.

Advantages of Prototype model:

Users are actively involved in the development.

Since in this methodology a working model of the system is provided, the users get a better

understanding of the system being developed.

Errors can be detected much earlier.

Quicker user feedback is available leading to better solutions.

Missing functionality can be identified easily.

Confusing or difficult functions can be identified

Disadvantages of Prototype model:

Leads to implementing and then repairing way of building systems.

Practically, this methodology may increase the complexity of the system as scope of the system

may expand beyond original plans.

Incomplete application may cause application not to be used as the full system was designed.

Incomplete or inadequate problem analysis.

Practical-4

Aim: Compare the various SE process models along with its advantages and

disadvantages.
SDLC Models

A software project, regardless of whether it is large or small, goes through certain defined stages,
which together, are known as the Software Development Life Cycle (SDLC).

There are five phases that are the part of the SDLC. These phases are:

• Systems Investigation – Identify problems or opportunities.

• Systems Analysis – How can we solve the problem?

• Systems Design – Select and plan the best solution.

• Systems Implementation – Place solution into effect.

• Systems Maintenance and Review – Evaluate the results of the solution.

SDLC models are created based on the various phases of the SDLC, the order in which they occur and
the interaction between them. The output generated by each phase serves as the input for the next.
1) Waterfall Model

2) Prototyping Model

3) Incremental Model

4) Rapid Application development (RAD Model)

5) Spiral Model

6) Extreme Programming Model

Prototyping Model

Incremental model

Waterfall Model

RAD Model

Extreme Programming Model

Spiral Model

Tabular Comparison of SDLC Models

Practical-5

Aim: What do you understand from Requirements? What are characteristics of

Requirements? Describe the different types of Requirements.

Requirements:

Somerville defines "requirement" as a specification of what should be implemented. Requirements specify how the
target system should behave. It specifies what to do, but not how to do. Requirements engineering refers to the
process of understanding what a customer expects from the system to be developed, and to document them in a
standard and easily readable and understandable format.

Characteristics of Requirements

Requirements gathered for any new system to be developed should exhibit the following three properties:

Unambiguity: There should not be any ambiguity what a system to be developed should do. For example, consider
you are developing a web application for your client. The client requires that enough number of people should be
able to access the application simultaneously. What's the "enough number of people"? That could mean 10 to you,
but, perhaps, 100 to the client. There's an ambiguity.

Consistency: To illustrate this, consider the automation of a nuclear plant. Suppose one of the clients say that it the
radiation level inside the plant exceeds R1, all reactors should be shut down. However, another person from the
client side suggests that the threshold radiation level should be R2. Thus, there is an inconsistency between the two
end users regarding what they consider as threshold level of radiation.

Completeness: A particular requirement for a system should specify what the system should do and also what it
should not. For example, consider a software to be developed for ATM. If a customer enters an amount greater
than the maximum permissible withdrawal amount, the ATM should display an error message, and it should not
dispense any cash.

Traceable: The requirement meets all or part of a business need as stated by stakeholders and authoritatively
documented.

Specify Importance: Many requirements represent a stakeholder-defined characteristic the absence of which will
result in a major or even fatal deficiency. Others represent features that may be implemented if time and budget
permits. The requirement must specify a level of importance.

Verifiable: The implementation of the requirement can be determined through basic possible methods: inspection,
demonstration, test (instrumented) or analysis (to include validated modelling & simulation).

Categorization of Requirements

Based on the target audience or subject matter, requirements can be classified into different types, as stated below:

User requirements: They are written in natural language so that both customers can verify their requirements have
been correctly identified

System requirements: They are written involving technical terms and/or specifications, and are meant for the
development or testing teams

Requirements can be classified into two groups based on what they describe:

Functional requirements (FRs): These describe the functionality of a system -- how a system should react to a
particular set of inputs and what should be the corresponding output.

Non-functional requirements (NFRs): They are not directly related what functionalities are expected from the
system. However, NFRs could typically define how the system should behave under certain situations. For example,
a NFR could say that the system should work with 128MB RAM. Under such condition, a NFR could be more critical
than a FR.

Non-functional requirements could be further classified into different types like:

Product requirements: For example, a specification that the web application should use only plain HTML, and no
frames

Performance requirements: For example, the system should remain available 24x7

Organizational requirements: The development process should comply to SEI CMM level 4

Practical-6

Aim: Identify Functional and Non-Functional Requirements from the given problem

statement.
Consider the problem statement for an “Online Polling System” to be developed:

“Internet has led to discussion of e-democracy and online voting. Many people think that

the internet could replace representative democracy, enabling everyone to vote on

everything and anything by online voting. Online voting could reduce cost and make

voting more convenient. This type of voting can be done for e-democracy, or it may be

used for finalizing a solution, if many alternatives are present. Online voting make’s use

of authentication, hence it needs security, and the system must be able to address

obtaining, marking, delivering and counting ballots via computer. Advantage of online

voting is it could increase voter turnout because of convenience, and it helps to reduce

fraud voting.”

Functional Requirements:

User Login: a user has to login in order to vote. User can login to see candidate details.

Publish Manifesto: A candidate can login and publish his election manifesto.

Vote: User can cast his vote in favour of specific candidate.

Count votes: System must be able to count votes per candidate.

Publish results: Admin can publish results.

Prevent fraud voting: Only valid user can participate in polling.

There could be others like email notifications, error handling and so on.

Non-Functional Requirements:

The system must remain accessible to thousands of users at a time.

Practical-7

Aim: Identify Functional and Non-Functional Requirements from the given problem

Statement.

Consider the problem statement for an “Online Auction System” to be developed:

“New user can register to the system through an online process. By registering a user

agrees to abide by different pre-defined terms and conditions as specified by the system.

Any registered user can access the different features of the system authorized to him/her,

after he authenticates himself through the login screen. An authenticated user can put

items in the system for auction. Authenticated users can place bid for an item. Once the

auction is over, the item will be sold to the user placing the maximum bid. Payments are

to be made by third party services, which, of course, is guaranteed to be secure. The user

selling the item will be responsible for its shipping. If the seller thinks he’s getting a good

price, he can, however, sell the item at any point of time to the maximum bidder

available.”

Functional Requirements:

User Registration: New user can register.

Terms and Conditions: Before registering, user have to agree with pre-defined terms and conditions.

User Login: Registered user can login. User can put items in the system for auction.

Bids: For auction, user can place bids.

Buyer: User which placed maximum bids will be buyer.

Online Payment: Third party services will be used for payment.

Seller can change buyer at any time.

There can be others like email verification, etc.

Non-Functional Requirements:

The system must remain accessible to thousands of users at a time.

Attractive GUI.

Practical-8

Aim: What are the various Project Estimation Techniques? Explain COCOMO.

What are various types of COCOMO? Explain Basic COCOMO model with

respect to Organic, Semi-detached and Embedded.

Project estimation may involve the following:

Software size estimation: Software size may be estimated either in terms of KLOC (Kilo Line of Code) or
by calculating number of function points in the software. Lines of code depend upon coding practices and
Function points vary according to the user or software requirement.

Effort estimation: The managers estimate efforts in terms of personnel requirement and man-hour
required to produce the software. For effort estimation software size should be known. This can either be
derived by managers’ experience, organization’s historical data or software size can be converted into
efforts by using some standard formulae.

Time estimation: Once size and efforts are estimated, the time required to produce the software can be
estimated. Efforts required is segregated into sub categories as per the requirement specifications and
interdependency of various components of software. Software tasks are divided into smaller tasks,
activities or events by Work Breakthrough Structure (WBS). The tasks are scheduled on day-to-day basis
or in calendar months. The sum of time required to complete all tasks in hours or days is the total time
invested to complete the project.

Cost estimation: This might be considered as the most difficult of all because it depends on more
elements than any of the previous ones. For estimating project cost, it is required to consider -

o Size of
software

o Software
quality

o Hardware

o Additional software or tools,
licenses etc.

o Skilled personnel with task-specific skills

o Travel
involved

o Communication

o Training and
support

Project Estimation Techniques

We discussed various parameters involving project estimation such as size, effort, time and cost.

Project manager can estimate the listed factors using two broadly recognized techniques –

Decomposition Technique: This technique assumes the software as a product of various
compositions. There are two main models -

Line of Code: Estimation is done on behalf of number of line of codes in the software
product.

Function Points: Estimation is done on behalf of number of function points in the software
product.

Empirical Estimation Technique: This technique uses empirically derived formulae to make
estimation. These formulae are based on LOC or FPs.

Putnam Model: This model is made by Lawrence H. Putnam, which is based on Norden’s
frequency distribution (Rayleigh curve). Putnam model maps time and efforts required with
software size.

COCOMO: COCOMO stands for COnstructive COst MOdel, developed by Barry W. Boehm. It
divides the software product into three categories of software: organic, semi-detached and
embedded.

Cost Constructive Model (COCOMO):

COCOMO (Constructive Cost Estimation Model) was proposed by Boehm [1981]. According to Boehm,
software cost estimation should be done through three stages: Basic COCOMO, Intermediate COCOMO,
and Complete COCOMO.

Types of COCOMO:

There are three types of COCOMO:

Basic COCOMO: The Basic COCOMO model is a static, single-valued model that computes software
development effort (and cost) as a function of program size expressed in estimated lines of code (LOC).

Intermediate COCOMO: The Intermediate COCOMO model computes software development effort as a
function of program size and a set of "cost drivers" that include subjective assessments of product,
hardware, personnel and project attributes.

Detailed COCOMO model: The Detailed COCOMO model incorporates all characteristics of the
intermediate version with an assessment of the cost driver's impact on each step (analysis, design, etc.)
of the software engineering process.

COCOMO can be applied to:

Organic

Semi detached

Embedded

Difference between Organic, Semi-detached and Embedded software:

Basic COCOMO Model:

The Basic COCOMO equations take the form:

where E is the effort applied in person-months, D is the development time in chronological months and
KLOC is the estimated number of delivered lines of code for the project (express in thousands). The
coefficients ab and cb and the exponents bb and db are given in following table:

Practical-9

AIM: Using basic COCOMO model, find out the EFFORT, TIME FOR DEVELOPMENT,

NUMBER OF DEVELOPERS REQUIRED if the project is Organic and the project size is

200KLOC.

Solution:

Effort =ab(KLOC)b

where ab=2.4 and bb=1.05

Effort=2.4(20)1.05=96 persons-month (approx.)

Development Time= cbEd

where cb=2.5 and db=0.38

Development time =2.5(96)0.38=12months (approx.)

No. of developers required= E/D=20persons (approx.)

Practical-10

AIM: Using basic COCOMO model, find out the EFFORT, TIME FOR DEVELOPMENT,

NUMBER OF DEVELOPERS REQUIRED if the project is embedded and the project size is

350KLOC.

Solution:

Effort =ab(KLOC)b

where ab=3.6 and bb=1.2

Effort=3.6(20)1.2= 8575persons-month (approx.)

Development Time= cbEd

where cb=2.5 and db=0.32

Development time =2.5(8575)0.32= 53.5months (approx.)

No. of persons required= E/D= 60persons (approx.)

PRACTICAL NO :-11

Aim:-What do you understand from Entity-Relationship Model. Explain Entity Set and

Relationship Set. What do you mean by Attributes and Keys?

Theory:-

An Entity Relationship Diagram (ERD) is a visual representation of different data using

conventions that describe how these data are related to each other. For example, the

elements writer, novel, and consumer may be described using ER diagrams this way:

In the diagram, the elements inside rectangles are called entities while the items inside

diamonds denote the relationships between entities. This ER diagram tutorial for beginners

covers most things related to ER diagram, for quick navigation use the links below.

ER Diagram Symbols and Notations:-

There are three basic elements in an ER Diagram: entity, attribute, relationship. There are

more elements which are based on the main elements. They are weak entity, multivalued

attribute, derived attribute, weak relationship and recursive relationship. Cardinality and

ordinality are two other notations used in ER diagrams to further define relationships.

Entity:-

An entity can be a person, place, event, or object that is relevant to a given system. For

example, a school system may include students, teachers, major courses, subjects, fees, and

other items. Entities are represented in ER diagrams by a rectangle and named using singular

nouns.

Weak Entity:-

A weak entity is an entity that depends on the existence of another entity. In more technical

terms it can defined as an entity that cannot be identified by its own attributes. It uses a

foreign key combined with its attributed to form the primary key. An entity like order item

is a good example for this. The order item will be meaningless without an order so it

depends on the existence of order.

Weak Entity Example in ER diagrams

Attribute:-

An attribute is a property, trait, or characteristic of an entity, relationship, or another

attribute. For example, the attribute Inventory Item Name is an attribute of the entity

Inventory Item. An entity can have as many attributes as necessary. Meanwhile, attributes

can also have their own specific attributes. For example, the attribute “customer address”

can have the attributes number, street, city, and state. These are called composite attributes.

Note that some top level ER diagrams do not show attributes for the sake of simplicity. In

those that do, however, attributes are represented by oval shapes.

Attributes in ER diagrams, note that an attribute can have its own attributes (composite

attribute)

Multivalued Attribute:-

If an attribute can have more than one value it is called an multivalued attribute. It is

important to note that this is different to an attribute having its own attributes. For example

a teacher entity can have multiple subject values.

Example of a multivalued attribute

Derived Attribute:-

An attribute based on another attribute. This is found rarely in ER diagrams. For example for

a circle the area can be derived from the radius.

Derived Attribute in ER diagrams

Relationship:-

A relationship describes how entities interact. For example, the entity “carpenter” may be

related to the entity “table” by the relationship “builds” or “makes”. Relationships are

represented by diamond shapes and are labeled using verbs.

Using Relationships in Entity Relationship Diagrams

Recursive Relationship:-

If the same entity participates more than once in a relationship it is known as a recursive

relationship. In the below example an employee can be a supervisor and be supervised, so

there is a recursive relationship.

Example of a recursive relationship in ER diagrams

Cardinality and Ordinality:-

These two further defines relationships between entities by placing the relationship in the

context of numbers. In an email system, for example, one account can have multiple

contacts. The relationship in this case follows a “one to many” model. There are number of

notations used to present cardinality in ER diagrams. Chen, UML, Crow’s foot, Bachman are

some of the popular notations. Creately supports Chen, UML and Crow’s foot notations.The

following example uses UML to show cardinality.

Cardinality in ER diagrams using UML notation

Most database management systems allow you to have more than one key so

that you can sort records in different ways. One of the keys is designated the

primary key, and must hold a unique value for each record. A key field that

identifies records in a different table is called a foreign key.

KEYS in ER Model: Primary Key, Candidate Key, Super Key:-

Super Keys :- Super key stands for superset of a key.

A Super Key is a set of one or more attributes that are taken collectively and can identify all

other attributes uniquely.

Candidate Keys:-

Candidate Keys are super keys for which no proper subset is a super key. In other words

candidate keys are minimal super keys.

Primary Key:-

http://creately.com/

It is a candidate key that is chosen by the database designer to identify entities with in an

entity set. Primary key is the minimal super keys. In the ER diagram primary key is

represented by underlining the primary key attribute. Ideally a primary key is composed of

only a single attribute. But it is possible to have a primary key composed of more than one

attribute.

Composite Key:-

Composite key consists of more than one attributes.

Example: Consider a Relation or Table R1. Let A,B,C,D,E are the attributes of this relation.

R(A,B,C,D,E)

A→BCDE This means the attribute 'A' uniquely determines the other attributes B,C,D,E.

BC→ADE This means the attributes 'BC' jointly determines all the other attributes A,D,E in

the relation.

Primary Key :A

Candidate Keys :A, BC

Super Keys : A,BC,ABC,AD

ABC,AD are not Candidate Keys since both are not minimal super keys.

PRACTICAL NO :-12

Aim:-Draw an ER Diagram for Library Management System which includes book_info,

Staff_info, issue_of_book, return_of_book , fine_calculation.

Theory:-

In the following Library Management System, the following entities and attributes can be

identified as following:

Book_Info:- The set of all the books in the library, each book has a book_id,title,author, and

availability.

Member:- The set of all library members,the member is described by the attributes

member_id, issue_date,name,street,city,zip_code etc.

Publisher:- The set of all publishers of the book, attributes are Pub_id,name,city, zip_code.

Supplier/borrow_by:- The set of all suppliers of the books, attributes of entity are sup_id,

name, street , Zip_Code.

PRACTICAL NO :-13
Aim:- What do you understand from Data Flow Diagrams? Describe Graphical notations for

Data flow Diagrams. Explain the Symbols used in DFD.

Theory:-

Data Flow Diagram:-

A data flow diagram (DFD) illustrates how data is processed by a system in terms of inputs

and outputs. As its name indicates its focus is on the flow of information, where data comes

from, where it goes and how it gets stored.

"A data flow diagram (DFD) is a graphical representation of the "flow" of data through an

information system, modeling its process aspects. Often they are a preliminary step used to

create an overview of the system which can later be elaborated. DFDs can also be used for

the visualization of data processing (structured design). A DFD shows what kinds of

information will be input to and output from the system, where the data will come from

and go to, and where the data will be stored. It does not show information about the timing

of processes, or information about whether processes will operate in sequence or in parallel

(which is shown on a flowchart)." [Data flow diagram. Wikipedia]

The Data Flow Diagrams solution from the Software Development area of ConceptDraw

Solution Park provides three vector stencils libraries for drawing DFD using the

ConceptDraw PRO diagramming and vector drawing software.

History of Data Flow Diagrams:-

Data flow diagrams became popular in the 1970s in software development.

They were first described in a classic text about Structured Design written

by Larry Constantine and Ed Yourdon. Yourdon & Coad's Object Oriented

Analysis and Design (OOA/OOD) was a way of visualizing software systems

before UML diagrams.

Data Flow Diagrams Notations:-

There are essentially two different types of notations for data flow

diagrams (Yourdon & Coad or Gane & Sarson) defining different visual

representations for processes, data stores, data flow and external entities.

Yourdon and Coad type data flow diagrams are usually used for system

analysis and design, while Gane and Sarson type DFDs are more common

for visualizing information systems.

Visually, the biggest difference between the two ways of drawing data flow

diagrams is how processes look. In the Yourdon and Coad way, processes

are depicted as circles, while in the Gane and Sarson diagram the processes

are squares with rounded corners.

Process Notations. A process transforms incoming data flow into outgoing

data flow.

Datastore Notations. Datastores are repositories of data in the system.

They are sometimes also referred to as files.

Dataflow Notations. Dataflows are pipelines through which packets of

information flow. Label the arrows with the name of the data that moves

through it.

External Entity Notations. External entities are objects outside the system,

with which the system communicates. External entities are sources and

destinations of the system's inputs and outputs.

The following symbols are used in a data flow diagram:

Systems Cycle Symbols used in data flow diagrams

Symbol Meaning Example

An entity. A

source of

data or a

destination

for data.

A process o

r task that is

performed

by the

system.

A data

store, a

place where

data is held

between

processes.

A data flow.

PRACTICAL NO :-14
Aim:- Make a DFD for Library Management System.

Theory:-

	Practical-1
	Software Engineering:
	Waterfall Model:
	Introduction:
	Pictorial representation of waterfall model:

	Advantages and Disadvantages of waterfall model:

	Practical-2
	Introduction:
	To explain in simpler terms, the steps involved in spiral model are:
	Activities which are performed in the spiral model phases are shown below:
	When to Use Spiral model?
	Advantages and Disadvantages of using Spiral Model:
	Advantages of using Spiral model are as follows:
	Disadvantages of Spiral model are as follows:

	Practical-3
	Introduction:
	Diagram of Prototype model:
	Advantages of Prototype model:
	Disadvantages of Prototype model:

	Practical-4
	SDLC Models
	Prototyping Model
	Categorization of Requirements

	Practical-6
	Consider the problem statement for an “Online Polling System” to be developed:
	Functional Requirements:
	Non-Functional Requirements:

	Practical-7
	Consider the problem statement for an “Online Auction System” to be developed:
	Functional Requirements:
	Seller can change buyer at any time.

	Non-Functional Requirements:

	Practical-8
	Project Estimation Techniques
	Cost Constructive Model (COCOMO):
	Types of COCOMO:
	COCOMO can be applied to:
	Difference between Organic, Semi-detached and Embedded software:

	Practical-9
	Solution:

	Practical-10
	Solution:
	PRACTICAL NO :-14
	Aim:- Make a DFD for Library Management System.

